#### **MEMORANDUM**

**DATE:** July 2, 2015

**TO:** City of Issaguah

**FROM:** Jeff Schramm

**TENW** 

**SUBJECT:** Newport Way Senior Housing Traffic Assessment:

Trip Generation, Concurrency, and Site Access Evaluation

TENW Project No. 4966

This memorandum documents the traffic analysis for the proposed Newport Way Senior Housing residential development and provides the information required for the transportation concurrency application and summarizes the trip generation and site access evaluation on Newport Way NW.

### **Project Description**

The proposed Newport Way Senior Housing development site is located on the north and east side of Newport Way NW south I-90, and west of SR 900 as shown in Attachment A. The preliminary site plan includes 136 senior housing attached units. The existing site is vacant. Primary vehicle access to the site would be provided via a single access intersecting with NW Newport Way NW approximately 1,100 feet north of the existing Pacific Elm Drive intersection that will share a new signalized access with the proposed Gateway Apartments development. Full project buildout is anticipated to be 2018. A preliminary site plan is provided in Attachment B.

## Trip Generation Estimates

The trip generation estimate for the proposed Newport Way Senior Housing development was based on the methodology included in the Institute of Transportation Engineers (ITE) *Trip Generation Manual*, 9<sup>th</sup> edition for Land Use Code (LUC) 252 (Senior Housing attached). The resulting weekday daily, AM, and PM peak hour trip generation associated with the proposed project is summarized in Table 1.

Table 1
Trip Generation Summary – Gateway Apartments

| Time Period          | ITE<br>Trip<br>Rate | <u>New Veh</u><br>In | icle Trips Ge<br>Out | enerated<br>Total |
|----------------------|---------------------|----------------------|----------------------|-------------------|
| Weekday Daily        | 3.44                | 234                  | 234                  | 468               |
| Weekday AM Peak Hour | 0.20                | 9                    | 18                   | 27                |
| Weekday PM Peak Hour | 0.25                | 18                   | 16                   | 34                |

As shown in Table 1, the proposed project is estimated to 468 new weekday daily trips, with 27 new trips occurring during the weekday AM peak hour (9 in, 18 out) and 34 during the weekday PM peak (18 in, 16 out).

### Transportation Concurrency

The information provided in this memo will also be used for the concurrency application. A concurrency application and fee will be submitted separately. A copy of the concurrency application is provided in Attachment C.

#### Site Access Evaluation

This section addresses the design, function, and operation of the proposed access onto Newport Way NW. Included are frontage requirements, turn lane evaluation, intersection LOS, and sight distance evaluation.

#### Frontage Improvements

The project proposes half-street frontage along Newport Way that would include road widening to accommodate a new 12-foot-wide center turn lane, 10-foot through lane, 5-foot bicycle lane, 5-foot landscape strip, and 10-foot sidewalk. A right-turn deceleration lane would not be warranted with the site traffic generation. Note that an Administrative Adjustment of Standards (AAS) has been submitted related to the proposed half-street frontage requirement.

#### Intersection LOS Analysis

The weekday AM and PM peak hour traffic volumes were estimated for future 2018 conditions based on peak hour counts collected by All Traffic Data on Wednesday, November 12, 2014, as well as application of a two percent annual growth rate on Newport Way NW. Traffic generated by the adjacent Gateway Apartments project were also included in the 2018 baseline without-project traffic volumes.

Traffic generated by the proposed Newport Way Senior Housing project were assigned to the site access in the AM peak hour based on a distribution split of 20 percent north and 80 percent south. The PM peak hour traffic generation was assigned to the site access based on a distribution split of 65 percent north and 35 percent south. The AM and PM peak hour traffic generated by the Senior Housing project were added to the without-project volumes resulting in the 2018 with-project volumes. Attachment D illustrates the existing and future traffic volumes at the site access intersection on Newport for both AM and PM peak hour conditions.

Weekday AM and PM peak hour LOS were also evaluated for future with-project conditions at the proposed site access intersection assuming a stop sign controls traffic from the project access. The results of the analysis are summarized in the Table 3 below.

Table 3
Newport Way Site Access Peak Hour LOS Summary

|                                     | <u>AM F</u>      | <u>'eak Hour</u>    | <u>PM Peak Hour</u> |                                 |  |  |  |
|-------------------------------------|------------------|---------------------|---------------------|---------------------------------|--|--|--|
| Location                            | LOS <sup>1</sup> | Delay²<br>(sec/veh) | LOS <sup>1</sup>    | Delay <sup>2</sup><br>(sec/veh) |  |  |  |
| Site Access Driveway on Newport Way |                  |                     |                     |                                 |  |  |  |
| Side-Street Turns                   | С                | 15.6                | В                   | 14.1                            |  |  |  |
| Southbound Left-Turn into Site      | Α                | 9.4                 | Α                   | 8.7                             |  |  |  |

<sup>&</sup>lt;sup>1</sup> LOS = Level of Service.

<sup>&</sup>lt;sup>2</sup> Delay refers to average control delay in seconds per vehicle



As shown in Table 3, the turning movements at the proposed site access onto Newport Way NW are anticipated to operate at LOS C or better in the AM and PM peak hours. The LOS results assume the presence of a center turn lane that will allow vehicles to utilize for a two-step maneuver when exiting the site. The detailed LOS results are provided in Attachment E.

#### Right-Turn Evaluation

Inbound Right-Turn Lane Analysis (Newport Way NW Northbound Right-Turn Movement)

The WSDOT *Design Manual* outlines the following guidelines in consideration of right-turn lanes at unsignalized intersections:

- Recommendation from Exhibit 1310-19 (Design Manual).
- A collision study indicates an overall crash reduction with a right-turn lane.
- The presence of pedestrians requires right-turning vehicles to stop.
- Restrictive geometrics require right-turning vehicles to slow greatly below the speed of the through traffic.
- There is less than decision sight distance for traffic approaching the intersection.

Based on our analysis of the estimated future year 2018 with-project PM peak hour traffic volumes at the site access location on Newport Way NW using *Exhibit 1310-19*, the westbound through and right-turn volumes indicate that a right-turn lane would not be justified.

#### Sight Distance Evaluation

Attachment F illustrates the entering sight distance at the location of the proposed access onto Newport Way. As shown, minimum entering sight distance standards would be met for a vehicle turning left or right from the site access location onto Newport Way.

If you have any questions regarding the information presented in this analysis, please contact me at 425-250-0581 or schramm@tenw.com.

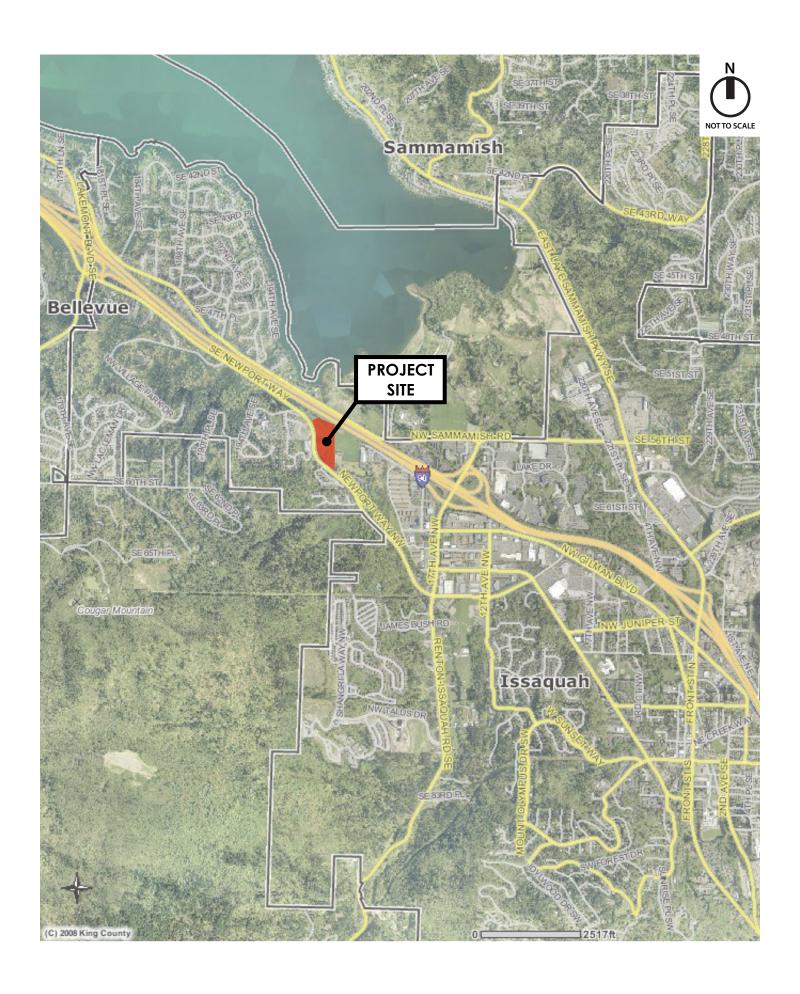
cc: Mike Milhaupt - The Wolff Company
Derrick Overbay - VIA Architects
Jeff Haynie, P.E. - TENW
Chris Bicket, P.E. - TENW

Attachments: A. Site Vicinity

B. Preliminary Site Plan

C. Concurrency Application

D. Traffic Volumes


E. LOS Analysis Results

F. Sight Distance Exhibit



# ATTACHMENT A

Site Vicinity



# ATTACHMENT B

Preliminary Site Plan



Attachment B: Preliminary Site Plan

# ATTACHMENT C

Concurrency Application

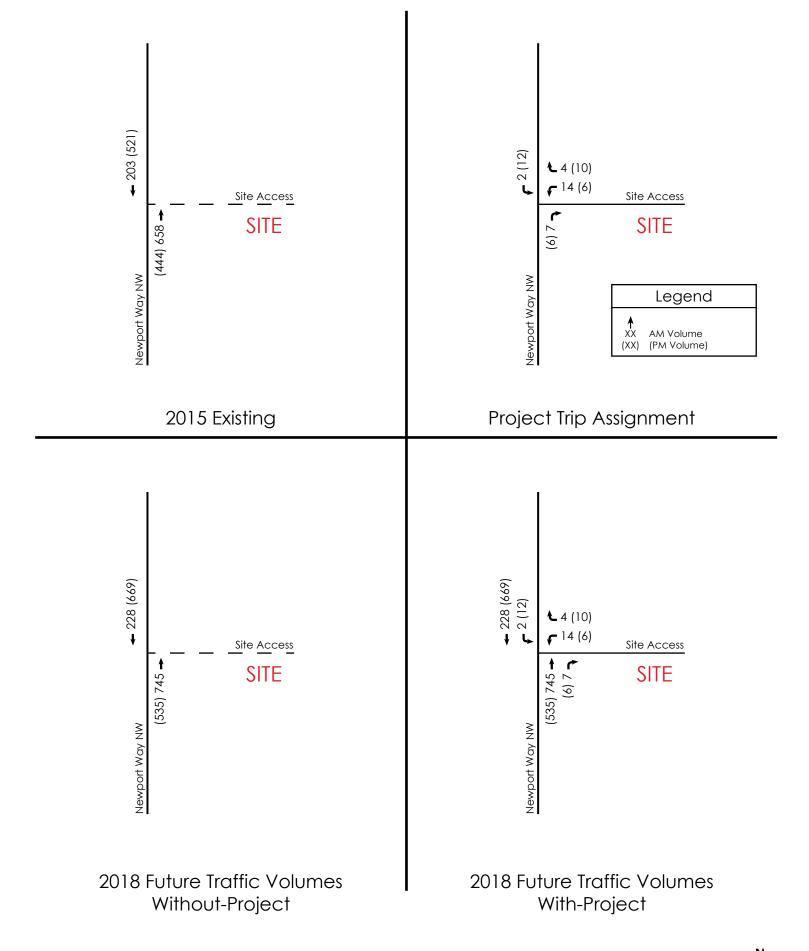
# Transportation Concurrency Certificate Application



Issaquah, WA 98027 425-837-3100 issaquahwa.gov

with Trip Calculator

This supplemental form provides the City of Issaquah with the information needed to issue a Concurrency Certificate for a development. Please complete the entire form and return it to the Permit Center.


The City's review will: 1) evaluate whether the proposed land use type, location, and size is consistent with the City's land use forecasts used for concurrency modeling, and, 2) the City will use the Trip Calculator to determine whether the proposed trips are within the citywide Trip Bank capacity.

| A. General Information                                                                                                                                                                                                                                                           |                    |                     |                   |          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------------|----------|--|--|--|--|
| Project Name:                                                                                                                                                                                                                                                                    |                    |                     |                   |          |  |  |  |  |
| Contact:                                                                                                                                                                                                                                                                         | ontact: Phone:     |                     |                   |          |  |  |  |  |
| B. Trip Calculator Please complete the Trip Calculator to provide to citywide Trip Bank.                                                                                                                                                                                         | the applicant's es | stimate of how a    | development m     | eets the |  |  |  |  |
| Prior Uses                                                                                                                                                                                                                                                                       | Number             | Unit of<br>Measure  | Trips per<br>unit | Total    |  |  |  |  |
| Proposed Uses                                                                                                                                                                                                                                                                    |                    |                     |                   |          |  |  |  |  |
| ·                                                                                                                                                                                                                                                                                |                    |                     |                   |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                  |                    |                     |                   |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                  |                    |                     |                   |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                  |                    | Trip                | s (Proposed):     |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                  |                    | -                   | Trips (Prior):    |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                  |                    |                     | Net Trips:        |          |  |  |  |  |
| C. Concurrency Application Fee A concurrency application fee is due at the time of your land use application submittal. Fee amount is calculated as:                                                                                                                             |                    |                     |                   |          |  |  |  |  |
| (Net Trips) X \$52.50 =                                                                                                                                                                                                                                                          | (fee includes      | technology surcharg | je)               |          |  |  |  |  |
| D. Traffic Impact Analysis A Traffic Impact Analysis (TIA) is required if your project has a 30 or more net trip increase. A TIA may be required even if the 30-trip limit hasn't been met. Please see our <a href="ITA requirements">ITA requirements</a> for more information. |                    |                     |                   |          |  |  |  |  |
| My project generates 30 or more tri<br>determined a TIA is required                                                                                                                                                                                                              | ips and requires   | a Traffic Impact    | Analysis or staff | has      |  |  |  |  |
| Staff Use Only Permit Number: Date Received: Staff Contact:                                                                                                                                                                                                                      |                    |                     |                   |          |  |  |  |  |

Rate Table 2015 02/05/2015

## ATTACHMENT D

Traffic Volumes – AM and PM Peak Hours





# ATTACHMENT E

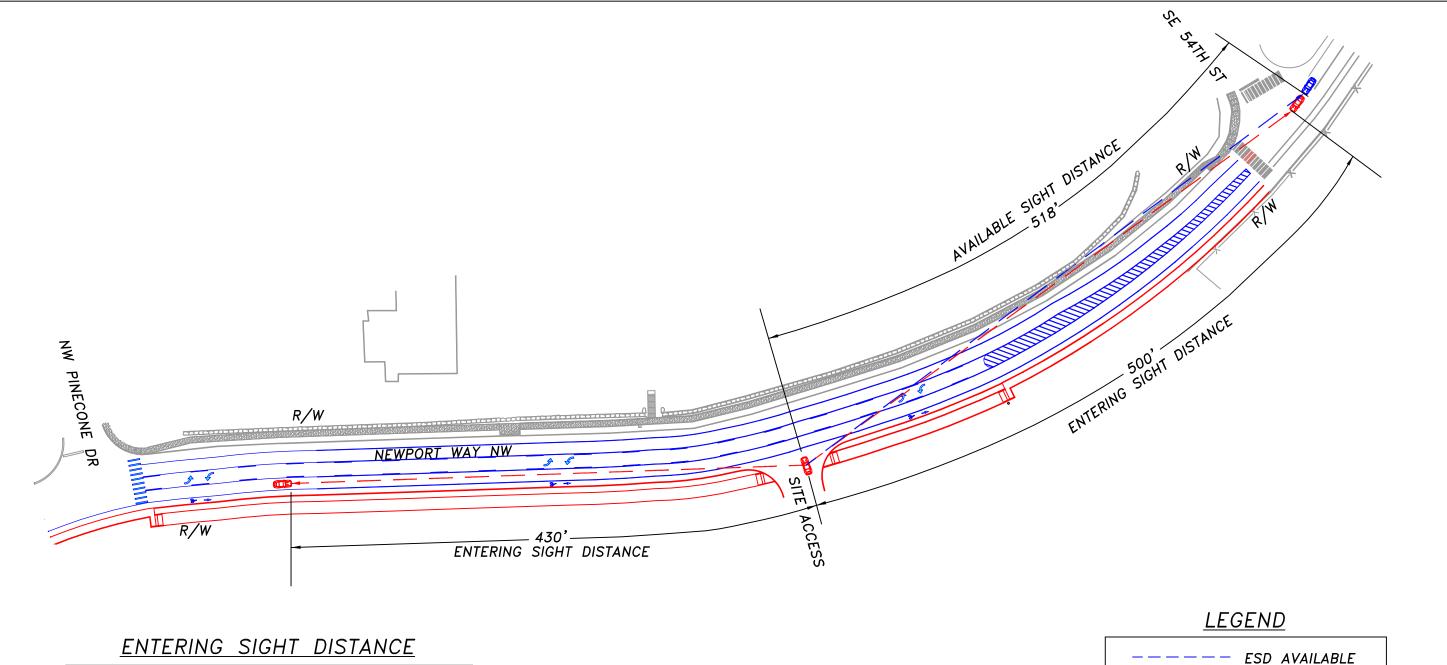
LOS Analysis Results

|                         | €     | •    | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | <b>↓</b> |
|-------------------------|-------|------|----------|-------------|-------------|----------|
| Lane Group              | WBL   | WBR  | NBT      | NBR         | SBL         | SBT      |
| Lane Configurations     | A     |      | ₽        |             | 7           | <b>†</b> |
| Volume (vph)            | 14    | 4    | 745      | 7           | 2           | 228      |
| Ideal Flow (vphpl)      | 1900  | 1900 | 1900     | 1900        | 1900        | 1900     |
| Storage Length (ft)     | 0     | 0    |          | 0           | 50          |          |
| Storage Lanes           | 1     | 0    |          | 0           | 1           |          |
| Taper Length (ft)       | 25    |      |          |             | 25          |          |
| Link Speed (mph)        | 25    |      | 40       |             |             | 40       |
| Link Distance (ft)      | 374   |      | 493      |             |             | 502      |
| Travel Time (s)         | 10.2  |      | 8.4      |             |             | 8.6      |
| Peak Hour Factor        | 0.92  | 0.92 | 0.92     | 0.92        | 0.92        | 0.92     |
| Heavy Vehicles (%)      | 0%    | 0%   | 1%       | 1%          | 1%          | 1%       |
| Shared Lane Traffic (%) |       |      |          |             |             |          |
| Sign Control            | Stop  |      | Free     |             |             | Free     |
| Intersection Summary    |       |      |          |             |             |          |
| Area Type:              | Other |      |          |             |             |          |

Control Type: Uns

Control Type: Unsignalized

| Intersection             |          |          |     |        |      |        |        |
|--------------------------|----------|----------|-----|--------|------|--------|--------|
|                          | 0.3      |          |     |        |      |        |        |
| in Boldy, siven          | 0.0      |          |     |        |      |        |        |
| Mayamant                 | WBL      | WBR      |     | NBT    | NBR  | SBL    | SBT    |
| Movement Value of the    |          |          |     |        |      |        |        |
| Vol, veh/h               | 14       | 4        |     | 745    | 7    | 2      | 228    |
| Conflicting Peds, #/hr   | 0        | 0        |     | 0      | 0    | 0      | 0      |
| Sign Control             | Stop     | Stop     |     | Free   | Free | Free   | Free   |
| RT Channelized           | -        | None     |     | -      | None | -      | 110110 |
| Storage Length           | 0        | -        |     | -      | -    | 50     | -      |
| Veh in Median Storage, # | 1        | -        |     | 0      | -    | -      | 0      |
| Grade, %                 | 0        | -        |     | 0      | -    | -      | 0      |
| Peak Hour Factor         | 92       | 92       |     | 92     | 92   | 92     | 92     |
| Heavy Vehicles, %        | 0        | 0        |     | 1      | 1    | 1      | 1      |
| Mvmt Flow                | 15       | 4        |     | 810    | 8    | 2      | 248    |
|                          |          |          |     |        |      |        |        |
| Major/Minor              | Minor1   |          |     | Major1 |      | Major2 |        |
| Conflicting Flow All     | 1066     | 814      |     | 0      | 0    | 817    | 0      |
| Stage 1                  | 814      | -        |     | -      | -    | -      | -      |
| Stage 2                  | 252      | -        |     | -      | -    | -      | -      |
| Critical Hdwy            | 6.4      | 6.2      |     | -      | -    | 4.11   | -      |
| Critical Hdwy Stg 1      | 5.4      | -        |     | -      | -    | -      | -      |
| Critical Hdwy Stg 2      | 5.4      | -        |     | -      | -    | -      | -      |
| Follow-up Hdwy           | 3.5      | 3.3      |     | -      | -    | 2.209  | -      |
| Pot Cap-1 Maneuver       | 248      | 381      |     | -      | -    | 815    | -      |
| Stage 1                  | 439      | -        |     | -      | -    | -      | -      |
| Stage 2                  | 795      | -        |     | -      | -    | -      | -      |
| Platoon blocked, %       |          |          |     | -      | -    |        | -      |
| Mov Cap-1 Maneuver       | 247      | 381      |     | -      | -    | 815    | -      |
| Mov Cap-2 Maneuver       | 355      | -        |     | -      | -    | -      | -      |
| Stage 1                  | 439      | -        |     | -      | -    | -      | -      |
| Stage 2                  | 793      | -        |     | -      | -    | -      | -      |
| <u> </u>                 |          |          |     |        |      |        |        |
| Approach                 | WB       |          |     | NB     |      | SB     |        |
| HCM Control Delay, s     | 15.6     |          |     | 0      |      | 0.1    |        |
| HCM LOS                  | C        |          |     | 0      |      | 0.1    |        |
| HOW EOS                  | C        |          |     |        |      |        |        |
| Minor Lane/Major Mvmt    | NBT      | NBRWBLn1 | SBL | SBT    |      |        |        |
| Capacity (veh/h)         | -        | - 360    | 815 | -      |      |        |        |
| HCM Lane V/C Ratio       | <u>-</u> | - 0.054  |     | -      |      |        |        |
| HCM Control Delay (s)    | -        | - 15.6   | 9.4 | -      |      |        |        |
| HCM Lane LOS             |          | - C      | Α   | _      |      |        |        |
| HCM 95th %tile Q(veh)    | -        | - 0.2    | 0   | -      |      |        |        |
| HOW FOUT MILE Q(VEH)     | -        | - 0.2    | U   | -      |      |        |        |


|                         | •     | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> |
|-------------------------|-------|------|----------|----------|-------------|----------|
| Lane Group              | WBL   | WBR  | NBT      | NBR      | SBL         | SBT      |
| Lane Configurations     | A     |      | f÷       |          | ň           | <b>†</b> |
| Volume (vph)            | 6     | 10   | 535      | 6        | 12          | 669      |
| Ideal Flow (vphpl)      | 1900  | 1900 | 1900     | 1900     | 1900        | 1900     |
| Storage Length (ft)     | 0     | 0    |          | 0        | 50          |          |
| Storage Lanes           | 1     | 0    |          | 0        | 1           |          |
| Taper Length (ft)       | 25    |      |          |          | 25          |          |
| Link Speed (mph)        | 25    |      | 40       |          |             | 40       |
| Link Distance (ft)      | 374   |      | 493      |          |             | 502      |
| Travel Time (s)         | 10.2  |      | 8.4      |          |             | 8.6      |
| Peak Hour Factor        | 0.92  | 0.92 | 0.92     | 0.92     | 0.92        | 0.92     |
| Heavy Vehicles (%)      | 0%    | 0%   | 0%       | 0%       | 1%          | 1%       |
| Shared Lane Traffic (%) |       |      |          |          |             |          |
| Sign Control            | Stop  |      | Free     |          |             | Free     |
| Intersection Summary    |       |      |          |          |             |          |
| Area Type:              | Other |      |          |          |             |          |

Control Type: Unsignalized

| Intersection             |        |          |     |          |      |        |      |
|--------------------------|--------|----------|-----|----------|------|--------|------|
| Int Delay, s/veh         | 0.3    |          |     |          |      |        |      |
| int Delay, Siven         | 0.5    |          |     |          |      |        |      |
|                          |        |          |     |          |      |        |      |
| Movement                 | WBL    | WBR      |     | NBT      | NBR  | SBL    | SBT  |
| Vol, veh/h               | 6      | 10       |     | 535      | 6    | 12     | 669  |
| Conflicting Peds, #/hr   | 0      | 0        |     | 0        | 0    | 0      | 0    |
| Sign Control             | Stop   | Stop     |     | Free     | Free | Free   | Free |
| RT Channelized           | -      | None     |     | -        | None | -      | None |
| Storage Length           | 0      | -        |     | -        | -    | 50     | -    |
| Veh in Median Storage, # |        | -        |     | 0        | -    | -      | 0    |
| Grade, %                 | 0      | -        |     | 0        | -    | -      | 0    |
| Peak Hour Factor         | 92     | 92       |     | 92       | 92   | 92     | 92   |
| Heavy Vehicles, %        | 0      | 0        |     | 0        | 0    | 1      | 1    |
| Mvmt Flow                | 7      | 11       |     | 582      | 7    | 13     | 727  |
|                          |        |          |     |          |      |        |      |
| Major/Minor              | Minor1 |          |     | Major1   |      | Major2 |      |
| Conflicting Flow All     | 1338   | 585      |     | 0        | 0    | 588    | 0    |
| Stage 1                  | 585    | 505      |     | -        | -    | 300    | -    |
| Stage 2                  | 753    | -        |     |          |      |        |      |
| Critical Hdwy            | 6.4    | 6.2      |     | _        | _    | 4.11   | _    |
| Critical Hdwy Stg 1      | 5.4    | -        |     |          |      | 4.11   | _    |
| Critical Hdwy Stg 2      | 5.4    | _        |     | _        | _    | _      |      |
| Follow-up Hdwy           | 3.5    | 3.3      |     |          | _    | 2.209  | _    |
| Pot Cap-1 Maneuver       | 170    | 515      |     | _        | _    | 992    | _    |
| Stage 1                  | 561    | -        |     |          |      | 772    |      |
| Stage 2                  | 469    | _        |     | _        | _    | _      |      |
| Platoon blocked, %       | 407    |          |     |          |      |        | _    |
| Mov Cap-1 Maneuver       | 168    | 515      |     | _        | _    | 992    | _    |
| Mov Cap-1 Maneuver       | 307    | -        |     | <u> </u> |      | 772    | -    |
| Stage 1                  | 561    | -        |     | -        | -    | -      | -    |
| Stage 2                  | 463    | -        |     | -        | -    | -      | -    |
| Slaye Z                  | 403    | •        |     | •        | _    | •      | _    |
|                          |        |          |     |          |      |        |      |
| Approach                 | WB     |          |     | NB       |      | SB     |      |
| HCM Control Delay, s     | 14.1   |          |     | 0        |      | 0.2    |      |
| HCM LOS                  | В      |          |     |          |      |        |      |
|                          |        |          |     |          |      |        |      |
| Minor Lane/Major Mvmt    | NBT    | NBRWBLn1 | SBL | SBT      |      |        |      |
| Capacity (veh/h)         | -      | - 411    | 992 | -        |      |        |      |
| HCM Lane V/C Ratio       | _      | - 0.042  |     | -        |      |        |      |
| HCM Control Delay (s)    | -      | - 14.1   | 8.7 | -        |      |        |      |
| HCM Lane LOS             | _      | - B      | Α   | -        |      |        |      |
| HCM 95th %tile Q(veh)    | -      | - 0.1    | 0   | -        |      |        |      |
| HOW FOUT MILE Q(VEII)    | -      | - 0.1    | U   | -        |      |        |      |

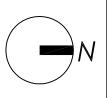
# ATTACHMENT F

Entering Sight Distance Exhibit



| <u>SPEED</u> | <u>LEFT TURNS</u> | <u>RIGHT TURNS</u> |
|--------------|-------------------|--------------------|
| 45 MPH       | 500 FT            | 430 FT             |

ISSAQUAH ADOPTED STREET STANDARDS STANDARD DETAIL T-01


POSTED SPEED 40 MPH DESIGN SPEED 45 MPH

| <u>LEGEND</u> |  |  |  |  |  |
|---------------|--|--|--|--|--|
| ESD AVAILABLE |  |  |  |  |  |
| ESD REQUIRED  |  |  |  |  |  |
|               |  |  |  |  |  |

#### PRELIMINARY - FOR DISCUSSION ONLY

SHEET





## DATE: 06/25/2015

# Transportation Engineering NorthWest

| Transportation Planning   Design   Traffic Impact & Operations<br>11400 SE 8th Street, Suite 200, Bellevue, WA 98004   Office (425) 889-6747 |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| Project Contact: Elyse Hanson, P.E.<br>Phone: 425-250-5004                                                                                   |

| <br>QUAH G<br>EWPORT | <br> | <br> |   |
|----------------------|------|------|---|
|                      |      |      | _ |

| NEWPORT WAY NW, ISSAQUAH | 1  |
|--------------------------|----|
|                          | OF |
| ENTERING SIGHT DISTANCE  | 1  |